Как Scrum Мастеру системно разобраться с бардаком в Jira на уровне компании

Отмечу, что мы смотрим с точки зрения управления трансформации всей компании, и данная проблематика может быть не очень существенна для каждой команды в отдельности.

Возможная проблематика:

  • Облако меток в Jira не поддается никакой логике — Например метка DevOps в куче существует в вариантах (DevOps, DEVOPS, Dev-Ops, Dev_Ops, DevOps с пробелом, DevOps со *) и не понятно по какому принципу ее надо ставить на Элемент бэклога.
  • Связи между элементами бэклога дублируют друг друга, как в части названий связей (Например — “Зависит от” и ”Dependent on”), могут быть дублированы с Epic Link и т. д.
  • Названия проектов и пространств имеют разную логику и зачастую не понятно что скрывается под проектом Dev. Проекты невозможно как то быстро сгруппировать.
  • Не понятна полнота ведения бэклога группой проектов и можно ли доверять оценкам в Story Point?
  • Создано много типов элементов бэклога, и они используются кардинально различающимся способом от команды к команде.
  • Не понятно, на сколько можно доверять Метрикам потока (flow metrics) и Дашбордам построенным по данным из Jira.

Команд 100+ и масштабы проблематики толко растут.

Простой ответ — ввести новую роль / человека, который будет “следить за порядком” но только как чтобы нечего не испортить и не затормозить трансформацию.

Кстати, ситуация с Jira является хорошим маркером для SM / RTE / Agile коучей, консультантов по изменениям, что с подобными проблемами могут сталкиваются и пользователи продуктов и сервисов создаваемые компанией. И лучше подойти к решению системно через Data Governance.

Ключевые элементы Agile трансформации

Ключевые элементы Agile трансформации

Без данных трудно быть DDDM. Полное название этого подхода — Data Driven Decision Making (DDDM), то есть информационно обоснованные решения (или data driven decisions). Он стал альтернативой подходу HiPPO (Highest Paid Person’s Opinion) — принятию решений на основе мнения руководства. Проблема этого подхода в том, что руководитель или менеджер не могут быть объективными и компетентными во всех вопросах и знать все особенности и нюансы. И что не маловажно иметь достаточно времени для отслеживания всех изменений на Рынке, в широком смысле слова.

Что такое Data Governance

Фактическим мировым отраслевым стандартном в области управления данными является DAMA-MDBOK.

Существуют и другие модели зрелости работы с данными:

  • Data Management Maturity (DMM), является частью CMMI
  • DCAM: The Data Management Capability Assessment Model

Но альтернативы мало помогут решить нашу, вполне конкретную проблему с Jira, они создавались для другого.

Также существуют фреймворки и базы знаний концентрирующиеся на том как работать уже с собранными данными:

Термины

Data Governance — концепция управления данными, является частью корпоративных политик управления. Существует несколько фреймворков управления данными

DAMA International — независимая от вендоров глобальная ассоциация технических и бизнес-профессионалов, управляемая Советом директоров. Основана в 1980г в США за 21 год до Agile Манифеста.

DAMA-DMBOK 2-е издание

DAMA-DMBOK. Свод знаний по управлению данными — всеобъемлющий справочник созданный DAMA, расшифровывается как DAMA — Data Managment Body of Knowledge. Труд монументальный, больше 830с. Главы написаны разными авторами, этим книга похожа на PMBOK от PMI и SRE от Google.

DMBOK Издание 1 — 2009г.

DMBOK Издание 2— 2017г, в 2020 переведена на русский язык.

CDMP — Certified Data Management Professionals, сертификационные экзамены DAMA.

CDO — Chief Data Officer, Директор по данным — это один из высших руководителей компании, отвечающий за использование и управление данными в организации.

Базовые принципы DAMA

  • Данные должны приносить новые ценности и новые продукты для компании.
  • Данные — Ценный актив, который требует управления.
  • Управление данными — отдельная корпоративная функция возглавляемая CDO.
  • Управление данными не является частью ИТ, и сильно тяготеет к Бизнесу.

Организационная схема DAMA — Роли и Комитеты

Слайд Юрия Клочко из Управление данными. DAMA-DMBOK/реальность

Рамочная структура DAMA-DMBOK — Колесо DAMA

Рамочная структура управления данными DAMA-DMBOK2 (колесо DAMA)

Помимо областей знаний, DAMA-DMBOK включает следующие

  • Этика обращения с данными
  • Оценка зрелости управления данными
  • Управление данными и управление организационными изменениями

Где легко приземлить Data Governance по DAMA-DMBOK, а где будет сложнее.

— Легче:

  • Международные корпорации
  • Финансовые институты (отсюда выросла DAMA)
  • Государственные структуры
  • Энергетический сектор (не в последнюю очередь за счет ассоциаций OSDU и PPDM)

— Сложнее:

  • Agile компании
  • Производства

Важно отметить что мы смотрим в рамках этой статьи только на Big Business. Средний и малый бизнес лучше рассматривать отдельно, в рамках другой статьи.

Первый шаг к DG в Agile компании

В лоб DAMA-MDMBOK трудно применить к Agile компании и при Agile трансформации. DAMA требует создавать комитеты, регламенты и еще много того, что не вписывается в Agile картину мира.

Что может сделать SM \ RTE c Jira

Можно системно подойти к организации работы с данными — применяя DAMA-DMBOK как справочник практик. Его можно успешно использовать для разрешения разногласий, особенно на первом этапе.

Принять, что в случае с Jira можно начать с 3х практик/областей:

  • Разработка бизнес-глоссария (Business Glossaries)
  • Master data management (MDM), еще это называется Управление Нормативно-справочной информацией (НСИ)
  • Управление Качеством данных (Data quality)

Установить роли:

  • Распорядители данных (Data Stewards) осуществляют надзор (oversight) за отдельными областями (domain) данных предприятия в процессе выполнения всех связанных с этими областями бизнес-функций.
  • Владелец данных (Data Owner) — это распорядитель бизнес-данных, который обладает подтвержденными полномочиями на утверждение решений, касающихся его области данных.

На время наиболее активной фазы трансформации владельцем Домена с Jira может быть Лидер по изменениям. Важно определить заранее условия передачи полномочий в Трайбы/ART’s, которые в итоге являются владельцами бизнес-процессов, рождающих данные.

Основная задача Владелец данных — прочертить границы ответственности для Распорядителей данных и ИТ службы.

Роль распорядителя данных может быть взята кем ни будь из Scrum Master’ов.

Распорядитель данных на своем уровне может создавать:

Бизнес-глоссарий — это не просто перечень терминов с определениями. Каждый термин должен быть связан с другими полезными метаданными: синонимами, метриками, данными о происхождении, бизнес-правилами, информацией о распорядителе данных, отвечающем за термин, и т. д.

Инструмент — Confluence.

НСИ (MDM) — это ведение контента мастер и референс данных, таких как справочник типов проблем, статусов и понятий, валют, стран, товаров, продуктовых направлений и т.п. в зависимости от организации. В рамках формализации справочников данные о них попадают в т.ч. и в бизнес-глоссарий как описание этих самых справочников.

Инструмент — Внутренние примитивы Jira + Confluence.

Управление Качеством данных (Data quality) — проверка данных введенных в Jira т.е. Бэклог всех команд на полноту, согласованность и актуальность.

Инструмент — Confluence + JQL запросы позволяющие выявлять ошибки.

Следующие шаги сильно будут зависеть от организации, но можно предположить несколько Кейсов:

  • Развитие Распорядителя данных в PO продукта, подразумевающего монетизацию.
  • Если вы собрали данные, и они не используются — нужно попробовать их продать.

--

--

--

RTE & Scrum Master from Nizhny Novgorod https://t.me/agile4dev

Love podcasts or audiobooks? Learn on the go with our new app.

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store
Михаил Соколов

Михаил Соколов

RTE & Scrum Master from Nizhny Novgorod https://t.me/agile4dev

More from Medium

Agile Sales — How We Are Discovering Better Ways of Working

Good response time? How to improve your KPIs with Jira!

Scrum: Hinder or Help?

What’s half of it?